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The characteristics of thermal convection in a fluid whose viscosity varies strongly with 
temperature are studied in the laboratory. At the start of an experiment, the upper 
boundary of an isothermal layer of Golden Syrup is cooled rapidly and maintained at 
a fixed temperature. The fluid layer is insulated at the bottom and cools continuously. 
Rayleigh numbers calculated with the viscosity of the well-mixed interior are between 
lo6 and los and viscosity contrasts are up to lo6. Thermal convection develops only in 
the lower part of the thermal boundary layer, and the upper part remains stagnant. 
Vertical profiles of temperature are measured with precision, allowing deduction of the 
thickness of the stagnant lid and the convective heat flux. At the onset of convection, 
the viscosity contrast across the unstable boundary layer has a value of about 3. In fully 
developed convection, this viscosity contrast is higher, with a typical value of 10. The 
heat flux through the top of the layer depends solely on local conditions in the unstable 
boundary layer and may be written 

Q, = - Ck,(ag/~v,)f AT$, 

where k ,  and v, are thermal conductivity and kinematic viscosity at the temperature 
of the well-mixed interior, K thermal diffusivity, a the coefficient of thermal expansion, 
g the acceleration due to gravity. AT, is the ‘viscous’ temperature scale defined by 

where p ( T )  is the fluid viscosity and T, the temperature of the well-mixed interior. 
Constant C takes a value of 0.47k0.03. Using these relations, the magnitude of 
temperature fluctuations and the thickness of the stagnant lid are calculated to be in 
excellent agreement with the experimental data. One condition for the existence of a 
stagnant lid is that the applied temperature difference exceeds a threshold value equal 
to (2AC). 

1. Introduction 
In many industrial and natural systems, thermal convection occurs in fluids whose 

viscosity varies strongly with temperature. For example, in geological reservoirs such 
as the Earth’s mantle and magma chambers, temperature differences are typically of 
several hundreds of degrees, implying viscosity variations of many orders of magnitude. 
Such convecting systems have been studied in the Rayleigh-BCnard configuration for 
a restricted range of viscosity contrasts, i.e. ratios, and Rayleigh numbers. 
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Marginal stability analyses have shown that flow develops preferentially in the least 
viscous parts of the fluid layer (Schubert, Turcotte & Oxburgh 1969; Stengel, Oliver & 
Booker 1982; White 1988). For finite-amplitude convection, theoretical efforts have 
been restricted to simple models in which an isothermal core flow is matched to 
boundary-layer flows using various assumptions. With this method, Morris & 
Canright (1984) and Fowler (1985) derived a scaling relationship for the heat flux, but 
did not specify its domain of validity. Recent numerical experiments have documented 
the three-dimensional planform of convection (Busse & Frick 1985 ; Christensen & 
Harder 1991). Ogawa, Schubert & Zebib (1991) identified two different regimes of 
convection depending on the behaviour of the upper boundary layer, which may be 
either involved in convective motions or stagnant in parts. These regimes were called 
the ‘whole-layer’ and ‘stagnant lid’ modes of convection, in agreement with earlier 
suggestions (Stengel et al. 1982; Jaupart & Parsons 1985). In these numerical studies, 
a few values of the Nusselt number are reported. 

In laboratory experiments, the largest viscosity contrast studied was lo5, at a 
Rayleigh number of lo4 (Booker 1976; White 1988; Stengel et al. 1982; Oliver & 
Booker 1983; Richter, Nataf & Daly 1983). Heat flux measurements have been 
interpreted in terms of a power-law relationship with the Rayleigh number (Booker & 
Stengel 1978; Richter et al. 1983). This relationship has been calibrated for Rayleigh 
numbers up to ten times critical, outside the range of values for many cases of practical 
interest. 

Available results cannot be extrapolated with confidence because of the limited 
parameter range investigated. For example, in magma reservoirs which are of interest 
to us, Rayleigh numbers typically exceed lo9 (Huppert & Sparks 1988; Huppert & 
Turner 1991). Further, these reservoirs evolve in transient regimes as they lose heat to 
the surrounding colder rocks. The present study aims at providing an extensive set of 
experimental measurements on transient convection at high viscosity contrast and high 
Rayleigh numbers, and to establish scaling laws for the most important variables: 
surface heat flux, thickness of the stagnant lid, effective temperature difference which 
drives convection. The basic situation investigated is that of an initially isothermal fluid 
layer which is impulsively cooled from above. These particular cooling conditions 
allow us to reach large viscosity contrasts across the unstable boundary layer. For a 
given temperature difference, steady-state Rayleigh-BCnard convection results in two 
boundary layers at the top and the bottom of the fluid layer, with each one having only 
part of the total temperature difference. We have been able to reach a viscosity contrast 
of lo6, which may be compared to the maximum value of lo4 across the upper 
boundary layer in the Rayleigh-Bhard calculations of Ogawa et al. (1991). 

The plan of the paper is the following. In 92, the apparatus and experimental 
techniques are described. Quantitative methods used to extract information from 
temperature measurements are explained in 93. Section 4 is devoted to a general 
description of the evolution of convection in the fluid layer. In $ 5 ,  the heat flux data 
are analysed with a local dimensional analysis in the thermal boundary layer. Scaling 
laws for the variables of interest are derived and verified against the experimental data. 

2. Experimental set-up 
2. I .  Apparatus and working fluids 

We built a Plexiglas tank with internal dimensions of 30 x 30 x 20 cm and 3 cm thick 
walls (figure 1). The relevant aspect ratio is that of the width of the tank over the 
thickness of the unstable boundary layer, which has a typical value of 30. The tank was 
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FIGURE 1. The experimental system, with all dimensions in cm: (a) side view, (b) top view. 
Temperature measurements are made with 19 platinum wires stretched across the tank and 5 
thermocouples, with coordinates given in table 3. The tank is surrounded by Styrofoam walls and is 
placed in a Styrofoam enclosure, which isolates it from the laboratory. 

covered with Styrofoam plates 4cm thick and the whole set-up was placed in a 
Styrofoam enclosure with walls 4 cm thick, which isolates it from the laboratory. At 
the upper boundary of the tank, a copper plate 2.4 cm thick with an inner circulation 
system was connected to a powerful cooler. The lower boundary was made of Plexiglas 
plate 3 cm thick underlain by a layer of Styrofoam 8 cm thick, which approximates a 
bottom boundary condition of zero heat flux. 

We used three working fluids. One was pure Golden Syrup, manufactured by Tate 
& Lyle Co. In order to achieve higher Rayleigh numbers, we also used Golden Syrup 
diluted with 10 wt. % water. The third fluid was silicone oil whose viscosity depends 
weakly on temperature. Unfortunately, in experiments with the latter two fluids, 
resolution of the boundary-layer structure was less satisfactory, and heat flux estimates 
were affected by larger error levels. These experiments were mostly used to study the 
onset of convection. All the relevant physical properties were measured in our 
laboratory (Appendix A; table 1 ; figure 2). The viscosity function for Golden Syrup 
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Temperature ("C) 
FIGURE 2. Viscosity as a function of temperature for Golden Syrup (GS), Golden Syrup diluted 

with 10 wt. % water (DGS), and 47V1000 Silicone oil (S). 

Diluted 
Silicone oil Golden Syrup Golden Syrup 
47V1000 (GS) (GSD) 

3.45 x 10-4 4.33 x 10-4 4.59 x 10-4 

1.05 x 10-7 1.21 x 10-7 1.10 x 10-7 

Coefficient of thermal expansion a (K-l) f 1 YO 

Thermal diffusivity I( (m' s-l) f 5 % 
Density at 20 "C po (kg m-3) k 1 % 9.7 x 10' 1.438 x lo3 1.384 x lo3 

TABLE 1. Physical properties of the working fluids 

is not exponential (figure 2), which will prove useful. We have carefully measured the 
thermal conductivity of Golden Syrup because Richter et al. (1983) have questioned 
the accuracy of values used by Wray (1978) and White (1988). Our measurements are 
slightly different at low temperatures (Appendix A). For consistency with White 
(1988), results are given first with Wray's conductivity values. However, we consider 
that our conductivity determinations are more accurate and use them in the final 
presentation of the results. 

2.2. Experimental conditions 
Starting from a layer of fluid at a uniform temperature &, the copper plate at the upper 
boundary was connected to a cooling bath at time t = 0. The upper boundary 
temperature was lowered to a fixed value = q - A T  in a short time (from 2 to 6 
minutes depending on the magnitude of the temperature drop). Convective motions 
were generated at the upper boundary, through repeated instabilities of the thermal 
boundary layer. The lower boundary was kept thermally insulated and hence the fluid 
layer was continuously cooled during an experiment. When the viscosity contrast was 
large, the uppermost part of the boundary layer remained stable and behaved as a 
stagnant lid overlying the actively convecting layer. 
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The initial conditions were such that the tank, its walls and the enclosure were at the 
same temperature q. The room temperature was colder, typically at 22 "C. In an 
experiment, the cooling fluid layer exchanges heat with the tank walls. In time 7 = 
d 2 / m ,  which is 2.7 h for the Plexiglas/Styrofoam wall assemblage, the cooling effect 
propagates to the outer wall surface. This outer surface is in the air gap within the 
encasing Styrofoam box, where the temperature remains close to the initial value. For 
the duration of an experiment, which is typically 3 h, heat losses to the room are 
therefore negligible and the fluid layer only gains heat from the walls. This is a very 
small fraction of the heat budget for the layer because of the reduced temperature 
difference and the low heat capacity of the walls. This was verified with heat flux 
measurements (see 93.1). 

The dimensionless numbers which characterize the experiments can be derived from 
the Oberbeck-Boussinesq equations and the viscosity function. Relevant physical 
properties are density at the reference temperature (Po), the coefficient of thermal 
expansion (a), thermal capacity (C,) and viscosity (p). We introduce the following 
scales : 

temperature A T  = q- & (the initial temperature difference), 
viscosity pi = p( q), 
length d, 
time d2/K, 
pressure pi K / d 2 .  

The dimensionless form of the momentum equation, which will be of interest in the 
discussion, is 

= - V P + p * V 2 u + ~ V T . ( V u + V u t ) - R a ,  d *  Tn, 
d T  

where u is the velocity field, P pressure, g the acceleration due to gravity and p* the 
dimensionless viscosity function. Superscript (t) denotes the transpose operator. The 
dimensionless numbers are therefore 

Prandtl number Pri = pi/po K ,  (2 a)  
Rayleigh number Ra, = p o a A T g d 3 / ~ p i  (2 b) 
together with 'viscosity' numbers which appear in the viscosity function. For Golden 
Syrup, there are four of them because dimensionless viscosity is written (Appendix A) 

ai T2+bi  T+ci 
p* = riexp 

For simplicity, we shall first describe our results with only one viscosity parameter, the 
viscosity ratio Ap = p(&)/p(Q, which is one particular combination of the four 
numbers (Ti, ai, bi, ci). We shall then use all parameters in a dimensional analysis. 

The experiments are listed in table 2, and cover a range of viscosity contrast of 
10°-106. They span a larger range of dynamics than might be suspected. In an 
experiment, the temperature difference across the upper boundary layer decreases, and 
the interior viscosity increases. We may calculate values of the Rayleigh number using 
the instantaneous values of temperature difference and interior viscosity. Over the 
duration of an experiment, the 'instantaneous' Rayleigh number typically decreases by 
a factor of 20. The range of effective Rayleigh numbers for this study is from about lo6 
to 10'. As shown in Appendix B, in these conditions, boundary-layer instabilities are 
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No. 
4.00 
4.01 
4.02 
4.03 
4.13 
4.14 
4.15 
4.16 
4.18 
4.19 
4.21 
4.23 
4.24 
4.25 
4.26 
4.28 
4.29 
4.31 
4.32 
4.33 
4.40 
4.41 
4.43 
4.44 

Fluid 
S 
S 
S 
S 
GS 
GS 
GS 
GS 
GS 
GS 
GSD 
GSD 
GSD 
GSD 
GSD 
GSD 
GSD 
GSD 
GSD 
GSD 
GS 
GS 
GS 
GS 

4% 
1.5 
1.5 
2.1 
1.5 

9.76 x lo2 
8.08 x 102 

1.18x lo2 
2.60 x 10’ 
1 . 1 7 ~  10’ 
6.40 
3.70 x 10’ 
5.60 x lo2 
6.50 
4.95 x 102 

8.09 x lo2 
1.12 x 101 
6.20 
1.85 x 102 

2.59 x 103 

5.50 x 104 

4.30 x 103 

9.60 x 105 
1.30 x 105 
9.30 x 103 

Rat 
1.8 x 107 
1.4 x 107 
3.6 x 107 
3.9 x 107 
1.9 x 107 
1.7 x 107 
1.7 x 107 
2.0 x 107 
1.7 x 107 
1.6 x 107 

5.2 x 107 

1.8 x 107 
1.7 x 107 

1.7 x 107 

2.5 x 107 
1.4 x 107 
2.5 x 107 
2.4 x 107 
2.1 x 107 

1.4 x los 

1.9 x 10s 
2.7 x los 

2.9 x lo8 

7.5 x lo6 

pr, 

9 x  103 
s x  103 
7~ 103 

4.7 x 103 
4.8 x 103 
4.8 x 103 
4.8 x 103 
4.0 x 103 
4.0 x 103 

1 . 4 ~  103 

3.5 x 103 
7.1 x 103 

7.1 x 103 
2.1 x 103 
2.3 x 103 
4.8 x 103 
4.8 x 103 
4.8 x 103 
4.8 x 103 

8 x  lo3 

7.3 x lo2 

7.3 x lo2 
7.3 x lo2 

7.2 x lo2 

AT (“C) 
20.70 
20.10 
37.80 
40.95 
54.10 
49.65 
48.80 
64.25 
39.60 
30.65 
30.81 
21.47 
41.00 
58.75 
18.29 
40.00 
68.70 
41.55 
19.62 
19.27 
41.16 
73.20 
67.80 
58.97 

T, (“C) 
19.25 
10.10 
7.20 
4.10 
0.80 
5.05 
5.90 

- 10.85 
17.00 
28.35 
20.56 
20.12 
10.35 

-7.52 
11.64 

- 17.60 
- 17.14 
- 19.85 

1.62 
15.62 
13.44 

- 18.77 
- 13.28 
-4.42 

TABLE 2. List of experiments: S denotes silicone oil, GS Golden Syrup and DGS Golden Syrup 
diluted with water 

Type Depths (in cm) 
Thermocouple 0 (copper plate) 0.37, 1.12, 2.22, 2.92, 9.92, 20.12 (bottom plate) 
Platinum wire 0.34, 0.54, 1.04, 1.54, 2.07, 3.07, 4.07, 6.07, 8.10, 10.10, 12.10, 14.14, 16.12, 17.03, 

TABLE 3. Depth coordinates of temperature measurement devices. These coordinates correspond to 
experiment no. 4.41 only, as there were slight changes of positions between experiments, due to 
changes of the frame and spring positions, and to thickness variations of the sealant at the top and 
bottom of the tank 

18.12, 18.60, 19.12, 19.64, 19.84 

determined primarily by local conditions. Explicit use of this will be made in the scaling 
analysis. 

2.3. Temperature measurements 
Two systems were used (figure 1). A set of 19 very thin platinum wires (0.2mm 
diameter) were stretched horizontally across the tank in a wedge configuration. The 
wires were attached to springs which were themselves attached to insulating Teflon 
screws placed through a thin metal frame. With this set-up, the wires are not affected 
by any thermal expansion or contraction of the holding frame. They allow the 
determination of the horizontally averaged temperature. At the Rayleigh number of 
lo’, we had between four and five data points in the upper boundary layer. A set of 
five thermocouples was also used to measure local temperature at selected locations, 
with four of them located near the upper boundary. Table 3 lists the coordinates of all 
these probes. Thermocouples were placed in the Styrofoam walls surrounding the tank, 
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0 30 60 90 120 

Time (min) 
FIGURE 3. The average temperature of the platinum wires as a function of time in experiment 4.16 (see 
table 2 for conditions), The depths of the wires are given in cm on each curve. The curve labelled 0 
corresponds to the copper plate at the top of the tank: note that its temperature drops to its final 
steady-state value in about 6 minutes, before the onset of convection at t ,  = 10 minutes. 

in the lower and upper plates and in the laboratory. All temperatures were read every 
30 s through a scanning voltmeter connected to a computer. 

The probes were designed to be much smaller than the dimensions of the convective 
plumes, typically by at least an order of magnitude, so that they did not perturb the 
flow significantly. To establish that they do not give erroneous readings, we proceeded 
as follows (Davaille 1991). We first used two different holding frames with different 
geometrical arrangements and spacing and verified that both gave similar readings in 
similar experiments. We also compared the temperature data obtained with the wires 
and the thermocouples, which are in different locations and represent different 
perturbations to the flow (figure 1). In an experiment, temperatures are steadily 
evolving with time as the fluid layer cools, but we expect 'quasi-ergodic' conditions, 
such that time and spatial averages are locally equivalent. The smoothed time series 
from the thermocouples gave the same temperature values as the wires at the same 
depths. Another test was that, in the limit of small viscosity variations, we obtained the 
same heat flux values as previous authors (see $4.3 below). Special care was taken to 
provide independent verification of the results and to evaluate the errors involved, as 
made clear in the following section. 

The platinum wires are located to within +_ 0.2 mm and give temperature values with 
an accuracy of 0.1 "C. Measurements made with these wires are shown in figure 3. 
Large fluctuations are apparent in the initial stages of convection because the first 
instability involves the whole boundary layer simultaneously. Later in the experiment, 
convective instabilities are not synchronous anymore. Each wire achieves a nearly 
random sampling of the various stages of an instability, and its average temperature 
evolves smoothly as time proceeds. Weak fluctuations remain and have been smoothed 
with a moving average. 

The thermocouple probes have a 2mm diameter and give temperature values at 
depths known to within & 1 mm with an accuracy of k0.025 "C. Their response time 
is about 2 s, which is much smaller than the period of fluctuations in these experiments 
(typically several minutes). The measurements exhibit large fluctuations which record 
the passage of plumes (figure 4). Temperature fluctuations were determined by 
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FIGURE 4. The time evolution of the local temperature measured by thermocouples in experiment 
4.19. Depths are given in cm. Fluctuations due to cold plumes are visibie. The period of the 
fluctuations increases from about 7 minutes at the onset of convection to 15 minutes after 2 h. 

removing from the readings the long-term trend obtained from the smoothed time 
series. 

3. Heat flux and boundary-layer structure 
The data were interpreted with the help of the heat equation. Local temperature is 

decomposed into its horizontal average, T(z, t ) ,  and a fluctuation, 8. The horizontal 
average of the heat equation is 

3.1. Heat flux determination 
The heat flux through the upper boundary of the fluid layer is 

where k,  is thermal conductivity at the upper boundary temperature, q. For the 
reduced range of temperature variations in the boundary layer, it is possible to neglect 
the temperature dependence of conductivity. In this case, (3) implies that 

The Taylor expansion of the horizontally averaged temperature near z = 0 can thus be 
written as follows: 

aT z3 a3T 
a Z  3!  az T(2,t) = T(O,t)+z-(0,t)+--,(O,t)+0(z4). 

In the boundary layer, we use two and three measurements to define first-degree and 
third-degree polynomial approximations of the temperature profile. This gives two 
independent estimates of the temperature gradient at z = 0. We expect the two-point 
estimate to be slightly smaller than the latter, owing to the neglect of the curvature 
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Temperature Viscosity Heat flux 
FIGURE 5. Vertical profiles of horizontally averaged temperature, viscosity and convective heat flux 
for fully developed convection in experiment 4.41. Viscosity and heat flux have been made 
dimensionless using viscosity at the interior temperature and the local heat flux scale Q, (equation 
(12)) respectively. The fluid layer can be divided in (i) the well-mixed interior, (ii) the unstable part 
of the thermal boundary layer and (iii) a stagnant lid. 

of the temperature profile. Further, we expect that the difference between the two 
decreases as a function of viscosity contrast, when the stagnant lid increases in 
thickness (Davaille 1991). Indeed, at the highest viscosity contrast when the lid is 
thickest, the two heat flux estimates were identical. We estimate that the heat flux 
values are known to better than f5%. An additional check on the heat flux 
determination is provided below. 

Integrating (3) between depths z = 0 and z ,  we obtain 

At the upper rigid boundary, po C, a ( 0 )  = 0. Equation (7) reduces to an equation for 
the convective heat flux. At each time, a piecewise cubic-spline interpolation of the 21 
temperature measurements is carried out which allows the determination of spatial 
derivatives. The same procedure is followed for the time series at each depth, and this 
yields the time derivative of temperature. These values are then used again in a cubic- 
splines interpolation scheme to calculate the time integral. We calculate the convective 
heat flux at each depth z starting from z = 0 where it is set to zero by definition. From 
the error values in all variables involved, we estimate the error in heat flux values to 
be smaller than 5 %. As shown in figure 5,  the convective heat flux decreases as z tends 
to 1. By definition, it must vanish at z = 1 (the tank bottom). Using the calculated value 
at z = 1, we obtain a ‘closure’ error by dividing it by the maximum value in the layer. 
In all cases, this ratio was found to be less than 6 %. This is close to the error estimate 
obtained by considering the uncertainties on the various variables, and hence indicates 
that heat gains from the tank walls are small. 

3.2. The stagnant lid thickness 
By definition, in a stagnant lid, heat transfer occurs by conduction only. Figure 5 shows 
the vertical profile of convective heat flux, which is indeed zero near the upper 
boundary. To calculate the lid thickness (figure 6), we draw the tangent through the 
inflexion point and determine the intersection with the vertical axis (w8 = 0). The 
inflexion point is difficult to determine, however the tangent through it is well defined. 
An alternative way to define the bottom of the lid would be at depth z where the 
convective heat flux drops to some fixed fraction of the maximum value in the layer. 
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:onvective heat flux 
FIGURE 6. Sketch showing the vertical profile of the convective heat flux and the method used to 
calculate the thickness of the stagnant lid. The tangent through the inflexion point (I) intersects the 
zero-heat-flux axis at some depth 8,. This depth goes to zero as the viscosity contrast goes to one, i.e. 
when approaching the constant-viscosity case. 
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1 (b) - 

Frequency ( x Hz) 
FIGURE 7. Spectrum of temperature fluctuations for experiment 4.41 at four depths near the top of 
the fluid layer (a) z = 0.37 cm, (b) z = 1.2 cm, (c)  z = 2.22 cm, (d )  z = 2.92 cm. Fluctuations have 
been made dimensionless with the largest value recorded. The amplitude of fluctuations decreases as 
depth decreases, and the magnitude of this decrease is much larger at high frequency. 

However, this is not satisfactory because, in the case of constant viscosity, it does not 
yield a zero lid thickness. With the inflexion point method, the constant-viscosity case 
is indeed associated with no lid. 

For verification, we used a second method. The fluid layer is decomposed into a 
stagnant region of thickness d,, below which temperature fluctuations occur due to 
convection. These fluctuations propagate through the lid by diffusion and are damped. 
We consider the heat conduction problem in a layer of constant thickness 8, with the 
following boundary conditions : 

8(0, t )  = 0 and 8(d,, t )  = sin(wt). (8) 
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FIGURE 8. R.M.S. temperature fluctuation as a function of depth in 1_..2eriment 41. Dots show the 
data points, with the maximum error in depth location. The solid and dashed curves are the 
theoretical response for 1.3 cm and 1.6 cm-thick lids respectively. The long-dashed curve is a fit to the 
data. 

The solution is (Carslaw & Jaeger 1959) 

nwS: 
O(z, t )  = A sin (wt + @) + 27CK (- l )n+ l  n4K47C4 + US: sin rc) exp ( - F) , (9 a) 

n=l  

where cosh (2pz) - cos (2P.z) 
cosh(2/36,)-~0~(2/36~) 

@ = arg ( sinh {pz( 1 + i)} ) 
p = ($ sinh {&( 1 + i)} ’ 

This equation includes an initial transient which becomes negligible rapidly. The 
remainder is the damped periodic response of the lid to temperature fluctuations from 
the convecting interior. Damping factor A depends on the lid thickness and the 
frequency of the fluctuation. 

Using the thermocouples, we determine the spectrum of temperature fluctuations 
over a total time of 128 minutes. The time series at each depth, 6(t), is tapered using 
a Hanning window (Bloomfield 1976) and its Fourier transform is calculated using an 
FFT program (figure 7). For each frequency, the data are then constrained to lie 
between two theoretical predictions (figure 8). With this method, we determine the lid 
thickness with an accuracy of about 1 mm. Obviously, thicknesses smaller than the 
depth of the first thermocouple (0.37 cm) cannot be resolved. One drawback is that the 
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I I I 

Viscosity contrast 
FIGURE 9. Lid thickness as a function of viscosity contrast. The numbers are experiment numbers 
from table 2. The continuous curves are obtained with the heat flux method of figure 5 .  The thick 
marks correspond to the smallest lid thickness as determined from the damping of temperature 
fluctuations. 

method only gives the smallest lid thickness over the total duration of the time series. 
With these limitations in mind, we find excellent agreement between the two methods 
of determining the lid thickness (figure 9). 

4. The characteristics of convection 
4.1. The onset of convection 

The onset of instability is defined as the time at which the temperature deviates from 
the initial cooling trend by AT/102 (figure 10). In one experiment, the insulating 
material was removed and photographs were taken (figure 1 l), showing that convective 
motions take the form of downgoing plumes generated at the upper boundary. In the 
case of constant viscosity, the onset of instability is very sharp (figure 10a) and is 
recorded simultaneously at all depths in the boundary layer. Below the boundary layer, 
the temperature stays constant until the arrival of convective plumes. The variable- 
viscosity case is markedly different (figure lob). The onset of convection is characterized 
by a smaller temperature deviation, indicating that the instability involves only part of 
the boundary layer. Further, the deviation does not occur at the same time everywhere 
in the boundary layer. In the example of figure lO(b), the z = 0.34 point sees its first 
temperature perturbation five minutes later than the critical time. The reason for this 
is that instability affects the upper part of the boundary layer indirectly, through 
conductive heat transport. 

With our method, the critical time for the onset of instability is determined with an 
error of f 15 s, i.e. between two successive temperature scans. The values obtained 
were made dimensionless using the local timescale for boundary-layer instabilities : 

d2 z rb = - Ra;3. 
K 

The dimensionless critical time increases as a function of viscosity contrast (figure 12). 
The data exhibit some scatter, which is expected as instability develops out of 
perturbations which may not be identical in all experiments. In constant-viscosity 
fluids, the onset time has a standard deviation of about 10% (Blair & Quinn 1969; 
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FIGURE 10. Time-evolution of the horizontally averaged temperature across the onset of convective 
instability. Numbers correspond to depth in cm. (a) Low viscosity contrast (experiment no. 4.00). 
Initially, the temperature data follow exactly the conduction solution. At t = 5 minutes, a sharp 
temperature increase occurs at z = 0.34 cm as the cold boundary layer detaches. At z = 8.1 cm, the 
first thermal perturbation reflects the passage of cold plumes: it occurs slightly later and is one of 
temperature decrease. (b) Large viscosity contrast (experiment no. 4.41). The first departure from the 
conduction evolution occurs at t = 12.5 minutes and z = 1.54 cm. Deeper fluid regions ( z  = 2.07) 
record smaller temperature increases, as the instability involves smaller temperature contrasts. 
Shallower fluid regions exhibit smaller perturbations at later times, for example at t = 17 minutes at 
z = 0.34, contrary to what would happen if they were involved in the instability. 

Jhaveri & Homsy 1982). The onset time shows no appreciable variation for viscosity 
contrasts below a value of about 10, and starts increasing at larger values of the 
viscosity contrast. These data can be used to determine a criterion for the onset of 
instability, but this is outside the scope of the present paper. 

4.2. Convection at the onset time and in the fully developed regime 
The characteristics of convection at the onset of instability are not representative of 
those of fully developed convection. In particular, the temperature difference involved 
in the instabilities is much smaller near the onset time than at later times. This is 
important because several studies have attempted to predict the features of finite- 
amplitude convection from marginal stability analyses (e.g. Smith 1988). 

Figure 13 shows vertical temperature profiles at several times close to the critical 
time for experiment no. 4.13. Until this time, the data follow exactly the conduction 
solution. At the critical time, the temperature profile differs from the conduction 
solution. This difference is restricted to the lower part of the boundary layer, showing 
that convective breakdown does not affect the uppermost fluid regions where viscosity 
is largest. The viscosity contrast across the unstable part of the boundary layer is 
between 2 and 3 in all experiments, in agreement with the theoretical results of Smith 
(1988). At the later time of 12 minutes, the temperature profile has developed a reversal 
which is not seen in the previous profiles. This feature is due to the mechanism of the 
instability: the lower part of the boundary layer has detached and has been replaced 
by hotter fluid, which leads to an S-shaped temperature profile. This profile is then 
smoothed out by thermal diffusion. After 20 minutes, the temperature profile has the 
same complex shape, but the stagnant lid is thinner than before. We interpret this as 
due to the local viscosity profile, which determines the characteristics of the instability, 

6 FLM 2.53 
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FIGURE 11. Shadowgraph pictures for experiment 4.29. (a) 15 s after the onset of instability as defined 
from the temperature recordings: no motion is visible in the interior. (b) 45 s after the onset of 
instability : plumes have detached from the upper boundary layer. 

as shown by Jaupart & Parsons (1985). Just at the critical time, the temperature 
gradient increases rapidly towards the top of the fluid layer, implying a sharp increase 
of viscosity which does not favour penetration. As convection develops, heat is brought 
into the boundary layer and the temperature profile is less steep, implying a more 
gradual viscosity increase. This allows the instability to involve a larger thickness of 
fluid, which results in a thinner lid. At later times, the fluid layer cools and becomes 
more viscous, and the lid gradually thickens (figure 13). 

The stagnant lid is thicker for larger values of viscosity contrast (figure 9). For each 
individual experiment, the lid thickness increases with time, save for an initial transient 
following the onset of instability. The variation of lid thickness for each experiment 
does not follow the general trend of all experiments considered together, which 
indicates that the viscosity contrast alone is not sufficient to describe the data. 
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FIGURE 12. The critical time for the onset of convection as a function of viscosity contrast, made 
dimensionless using the local scale T,, (equation (10)). There is no appreciable variation for viscosity 
contrasts less than 10. 

4.3. Thermal structure and evolution of the convecting layer 
Shadowgraph observations do not provide any evidence for any large-scale circulation 
over the dimensions of the tank. Plume generation is often repeated at the same 
location, which has also been observed in experiments with small viscosity variations 

6-2 
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FIGURE 14. Heat flux through the upper boundary, made dimensionless with local scale (12), as a 
function of viscosity contrast. The experiment numbers are from table 2.  The boxes shows values for 
weak viscosity variations with silicone oil and diluted Golden Syrup, which are less accurate. In each 
experiment, the dot represents the initial value at the onset of convection. 

(Sparrow, Husar & Goldstein 1970; Asaeda & Watanabe 1989). One explanation may 
be that an instability induces temperature and hence viscosity fluctuations in the 
stagnant lid, which act as a 'nucleation' site for the next instability. The phenomenon 
is not due to the presence of temperature probes, as shown by the fact that the plume 
positions do change during an experiment and from one experiment to the next. 

The fluid layer can be separated into three regions (figure 5):  the stagnant lid, the 
unstable part of boundary layer, and the well-mixed interior. Figure 4 shows the 
evolution of temperature as a function of time in an experiment with moderate 
viscosity contrast (no. 4.19). Temperature fluctuations take the form of negative spikes 
which record the passage of cold plumes. Because of the large layer depth, the interior 
temperature evolves on a timescale which is much longer than the intermittency. Thus, 
each breakdown of the boundary layer can be thought of as occurring in a steady 
background temperature field. Figure 8 shows the amplitude of temperature 
fluctuations at large viscosity contrast. Temperature fluctuations are maximum near 
the bottom of the unstable boundary layer, which is consistent with the mechanism of 
intermittent plume release. 

In the well-mixed interior, the magnitude of temperature fluctuations is considerably 
reduced, the horizontally averaged temperature is uniform and the convective heat flux 
exhibits a linear decrease with depth (figure 5). Let us denote the horizontally averaged 
temperature of the well-mixed layer by T,(t). The heat equation (3) therefore reduces 
to 

which shows that the convective heat flux has a constant vertical derivative. 

following local scale : 
Figure 14 shows measurements of the surface heat flux made dimensionless with the 

where k, is thermal conductivity calculated at the interior temperature T,, and 
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AT, = Tm- q, the total temperature difference across the boundary layer. The 
dimensionless heat flux decreases as the viscosity contrast increases, reflecting the fact 
that an increasingly large part of the thermal boundary layer does not participate 
in convection (figure 14). At viscosity contrasts smaller than about 5, heat flux values 
do not exhibit appreciable differences, in agreement with Booker (1976). These 
determinations are effected by larger error levels than those for pure Golden Syrup. 
The values are between 0.16 and 0.17, and agree with earlier determinations. Townsend 
(1959, 1964) and Deardorff, Willis & Lilly (1969) proposed values of 0.19 and 
0.20 f 0.2 respectively for water, and the more precise measurements of Katsaros et al. 
(1977) led to a value of 0.156. 

5. Local dimensional analysis 
5.1. Local heat Jux and temperature scales 

The fluid layer evolves on a timescale which is much larger than the intermittency of 
convective breakdown (figure 4). This reflects the basic fact that a thin boundary layer 
is acting to cool a much larger body of fluid. We argue that, at each time, the dynamics 
of instability depend only on the instantaneous state of the upper boundary layer and 
hence can be characterized by the instantaneous values of the parameters, i.e. 

AT, = T,- q, V ,  = v(T,). (13) 
This approach would not be valid in the study of the large-scale velocity field in the 
layer interior because it evolves on a longer timescale. The following analysis is 
restricted to boundary-layer processes and its validity will be verified by its implications 
(see (18) below). 

We use the dimensional analysis of $2 based on external scales for the variables. For 
large Prandtl number, the dimensionless heat flux may be written as follows: 

where all dimensionless numbers are defined as in $2 and calculated using the local 
values (1 3). Convective instabilities are determined solely by local conditions in the 
boundary layer, and hence are independent of the layer depth d. This determines the 
dependence of Q* on Ram. The surface heat flux, Q,, can now be written as 

We next argue that this heat flux does not depend on the total temperature difference 
AT, because part of the boundary layer remains stable. The driving temperature 
difference depends only on local conditions in the unstable boundary layer. 
Accordingly, we write heat flux as 

where the local temperature difference A T  is given by 

(17) 
The reasoning predicts that this temperature difference depends only on the viscosity 
profile in the unstable boundary layer, at temperatures close to the interior temperature 

AT, = AT,(&(rm, a,, bm, c,))’. 
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FIGURE 15. Plot of AT! from equation (18) as a function of viscosity contrast for four representative 
experiments spanning three orders of magnitude of viscosity contrast. The vertical bar shows the 
experimental error. 

T,. For a given viscosity function, this difference should therefore depend only on the 
interior temperature T,. We test this by writing 

which is calculated from the experimental data and shown as a function of the interior 
temperature T, in figure 15. The scaling argument predicts that the values should 
collapse onto a single curve, which is verified within the accuracy of the measurements. 
This provides a justification for our starting assumption. 

5.2. The ‘viscous’ temperature scale 
As indicated by (17), the driving temperature difference depends on several variables 
describing the viscosity function. However, instabilities are confined to a region where 
viscosity variations are reduced, and we propose to approximate locally the viscosity 
function by an exponential. In this case, a ‘viscous’ temperature scale may be defined 
as 

Using the full viscosity function (equation (2c)), it can be seen that this definition is 
indeed of the form (1 7) required by the dimensional analysis : 

(a,  T; + b, T; + c,)~ AT, = AT,. 
- 2a, T; - b, 

Using this temperature scale, we define the corresponding heat flux scale Q, with an 
equation of the form (12): 
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FIGURE 16. Heat flux made dimensionless using the ‘viscous’ scales (equations (19) and (21u)), as a 
function of viscosity contrast for all experiments .with viscosity contrasts greater than lo2. The 
experimental error is f 5 YO. 

Heat flux determinations made dimensionless with this new scale are shown in figure 
16. The resulting values can be considered identical given the magnitude of 
measurement errors. This indicates that the temperature difference A C  in (17) is indeed 
proportional to the viscous temperature scale. We conclude that, at high viscosity 
contrast, the heat flux is given by the following equation: 

Depending on the conductivity values for Golden Syrup at low temperatures 
(Appendix A), constant C takes different values : 0.41 f 0.03 for Wray’s determinations 
and 0.47 & 0.03 for our own. 

Another understanding of the ‘viscous’ temperature scale can be obtained by going 
back to the momentum equation (1). This equation contains two dimensionless 
variables: viscosity and the derivative of viscosity with temperature. One might argue 
that both variables must take values of order 1 in the unstable boundary layer. Indeed, 
we have shown experimentally that the first variable never exceeds a value of about 10. 
The second variable is the dimensionless derivative of viscosity. If we use the external 
temperature scale, AT, it takes a representative value of ATJAT, which can be made 
arbitrarily high if A T  is increased. This is clearly not appropriate and shows that 
temperature must be rescaled with AK. 

5.3. The ‘lid’ model 
The stagnant lid passively transports the heat brought from below by convection, and 
displaces the rigid boundary downwards (Nataf & Richter 1982). According to the 
phenomenological model of intermittent plume release, the magnitude of temperature 
fluctuations in the convecting fluid must be proportional to the temperature difference 
across the unstable boundary layer (Townsend 1959; Howard 1964). Comparison with 
constant-viscosity experiments is not straightforward. There is a steady evolution of 
convection conditions as the fluid layer cools, and hence the timeseries does not sample 
all the possible fluctuations. We proceeded as follows. We took the largest fluctuations 
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FIGURE 17. The maximum amplitude of temperature fluctuations in the boundary layer, Om,,, as a 
function of the viscous temperature scale AT. The domain for each experiment is shown as a box: 
boxes with dashed edges correspond to experiments with poor sampling in the boundary layer. The 
dashed horizontal line corresponds to the average value for all experiments. 

recorded, and estimated their maximum amplitude in the boundary layer, which we call 
O,,,. We compare this to the value of A K  at the same time (figure 17). The data exhibit 
some scatter which can be attributed to the insufficient sampling achieved, but which 
is a small fraction of the total temperature difference across the boundary layer, AT,. 
The best-fit relationship between Omax and AT, is 

em,, = 0.70 x AG. (22) 

To determine the temperature difference across the unstable boundary layer, which we 
call A T ,  we have used two methods which gave the same result. One is to measure it 
directly from the temperature profiles below the stagnant lid. The other is to refer to 
the heat flux equation. In the unstable part of the boundary layer, viscosity contrasts 
never exceed a value of 15 and, in these conditions, heat flux should be given by the 
usual equation : 

where C* is a constant equal to 0.16 (Katsaros et al. 1977). Equating the two heat flux 
equations leads to 

(24) C*AC = CAT$,. 

For the experimentally determined values of 0.16 and 0.41 for C* and C respectively, 
we find A K  z 2Aq. We thus relate the largest temperature fluctuation Om,, to the 
temperature difference A C  : 

(25) 

This is close to the observations of Thomas & Townsend (1957). 
Assuming a sinusoidal fluctuation with a single frequency, the corresponding r.m.s. 

amplitude is 0.25 x AT with Wray's conductivity values and 0.21 x A& with our own. 
We have only recorded the largest fluctuations, and hence these values must be 

Omax z 0.35 x AT,. 
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considered as upper bounds when compared to the value of 0.18 measured by 
Townsend (1959) and predicted by Howard (1964). Precise comparisons are 
unwarranted because the presence of a conducting region above a fluid layer changes 
the dynamics (Hurle, Jakeman & Pike 1967; Busse & Riahi 1980). The agreement can 
thus be considered satisfactory and validates the model of intermittent plume release. 

Across the lid of thickness S,, the temperature difference is (ATm-AG). Thus, the 
surface heat flux Qs must be 

Using equation (21 a), this equation is recast as one for S, : 

Using the experimental values for the constant C and for the temperature ratio 
(ATJAK) respectively, calculated values of the lid thickness are in excellent agreement 
with the independent determinations (figure 18). 

5.4. Domain of validity of the analysis 
The ‘whole layer’ mode of convection such that the whole thermal boundary layer is 
involved in the instability (Jaupart & Parsons 1985; Ogawa et al. 1991) was only 
observed at low viscosity contrast. In this regime, there is no detectable difference with 
the constant-viscosity case (figure 12). The lowest viscosity contrast for which we were 
able to detect the presence of a lid is about 15 (figure 9). When a stagnant lid existed, 
the viscosity contrast across the unstable part of the boundary layer was never smaller 
than 10. Thus, a necessary condition for the presence of a ‘stagnant lid’ is that the 
viscosity contrast exceeds this value. A better criterion may be obtained from the 
equation for the lid thickness, which has a physical solution only when the following 
inequality is met: 

AT, A C  
AT, AT, 
->- 

or, using the value of 2 for the ratio ATJAT,: 

It can be shown that this criterion has a form similar to the one proposed by Stengel 
et al. (1982) on different grounds. 

The viscosity of Golden Syrup varies with temperature in a hyperexponential way 
(Appendix A). An important issue is to what extent our results can be applied to other 
fluids with different viscosity functions. As shown by the momentum equation (l), both 
viscosity and the derivative of viscosity play a role, and it is the balance between the 
two which determines the dynamics of convection. For Golden Syrup, the details of 
this balance are different as the thermal conditions change, because the viscosity 
function is not exponential. The presence of a stagnant lid implies that only a reduced 
range of viscosity variation exists in the actively convecting fluid, implying a weak 
sensitivity to the full viscosity function. The analysis shows that it is sufficient to locally 
approximate the viscosity profile by an exponential one but this local function changes 
from one experiment to the next, as the interior temperature varies. In effect, our 
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Viscosity contrast 
FIGURE 18. Stagnant lid thickness as a function of viscosity contrast for Golden Syrup experiments. 
Continuous lines are from the heat flux measurements of $3. Dashed lines correspond to the 
predictions of equation (27). At the highest viscosity contrast, the two sets of values cannot be 
distinguished from each other. 

experiments span a range of local viscosity functions. This is best shown by the viscous 
temperature scale which is the e-folding temperature for viscosity variations. In the 
experiments, AT varies from 14 "C to 4 "C, i.e. by a factor of more than three, yet the 
scaling relationships hold for all of them. Further, measurements with diluted Golden 
Syrup correspond to yet another viscosity function and, although of lesser quality, are 
consistent with those for pure Syrup. We suggest therefore that the scaling laws derived 
in this paper apply to most natural fluids whose viscosity exhibits a monotonic decrease 
as temperature increases. 

6. Conclusion 
At high Rayleigh numbers and large viscosity contrast, thermal convection is such 

that a significant thickness of fluid remains stagnant. Convective instabilities are 
sensitive to the viscosity structure of the unstable boundary layer, and hence to the 
temperature profile. One consequence of this is that conditions at the onset of 
instability are not identical to those in the fully developed regime. Convection can be 
described using local scales in the unstable part of the boundary layer, independently 
of the overall temperature difference applied between the fluid interior and the upper 
boundary. The 'viscous' temperature scale proposed in this paper is sufficient to 
account for the most important characteristics of convection. 

Genevikve Brandeis made preliminary experiments which helped pave the way for 
this investigation. GCrard Bienfait helped with the design of the apparatus and kept the 
laboratory in working order. We benefited from discussions with Stephen Sparks, 
Stephen Tait, Herbert Huppert and Neil Ribe. Three anonymous critical reviews led to 
a sharper and better manuscript. This study has been supported by grants from 
CNRS/INSU (DBT Theme 3 InstabilitCs contribution no.). 



High- Rayleigh-number thermal convection 163 

Appendix A. Physical properties of the working fluids 
Viscosity measurements were made with a falling ball viscometer and a rotating 

viscometer over a range of shear rates for temperatures between - 20 "C and + 70 "C. 
In these conditions, the three fluids were Newtonian with viscosity functions listed 
below. In all cases, measured deviations from the best-fit functions were less than 2 YO. 

Silicone oil 47V 1000 
P = Po exp (AT),  (A 1) 

with po = 1.62 Pa s, A = - 1.97 x lo-' "C-l; 

Golden Syrup 

with 
p0 = 4.485 x lo-' Pa s, A = -7.5907 x lo-', 

B = 3.8968 x low4, C = 4.0130 x lo-'; 

Diluted Golden Syrup 

with 
p0 = 1.15 x Pa s, A = -2.9146 x 

B = 7.6761 x C = 7.0227 x lo-'. 

In all these equations, T is in degree Celsius. The equation for Golden Syrup gives 
values within 5 %  of those quoted by White (1988). 

Density was measured between temperatures of 0°C and 60°C using floating 
densimeters, which gave the coefficient of thermal expansion. For Golden Syrup, our 
values are identical to those of White (1988). 

For thermal conductivity, we undertook a series of careful measurements. Wray 
(1978) used a coaxial cylinder apparatus, which gives conductivity values with an error 
of +2%, and investigated a temperature range of 20-60 "C. He gave the following 
relationship : 

k(T) = 0.316+ 1.843 x x T W m-l K-l, with Tin "C. (A 4a) 

Given the error estimate and the observed conductivity variation, it is clear that this 
equation cannot be extrapolated with confidence. Richter et al. (1983) proposed 
another relationship which differs from this one by as much as 20 YO for temperatures 
below 0 "C, which are of interest here. We used a needle-probe method such that a fixed 
power is released over a line source buried in the liquid. This method was calibrated 
with solid standards, and has an accuracy of f 3 YO. As in other methods, the 
occurrence of convection must be avoided, which was verified in two independent 
ways. First, we took a silicone oil with viscosity similar to that of Golden Syrup and 
obtained the correct conductivity value. Also, we repeated the measurements with 
values of the power input differing by a factor of two: any variation in the efficiency 
of convective heat transfer would result in different values of ' apparent' conductivity. 
Measurements were made in a temperature-controlled chamber at different ambient 
temperatures. Figure 19 summarizes the available data. Given the errors of the 
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different methods, our values are compatible with those of Wray over most of the 
temperature range he investigated, as well as with those of Richter et al. (1983). The 
least-squares linear regression through our data points has a positive gradient, as 
expected for a fluid containing water (Bird, Stewart & Lightfoot 1960): 

k = 0.358+2.4 x x T W m-l K-l, with T in  "C. (A 4b) 
This equation was adopted as an alternative to Wray's. 

To obtain values of thermal diffusivity, an initially isothermal layer was heated from 
the top, and the temperature evolution was recorded. The heat conduction equation 
was integrated numerically using the true values of the upper boundary temperature 
T(0, t )  for a range of thermal diffusivity values. Calculated temperatures were 
compared to the measured ones. This method gives an average value of diffusivity over 
the temperature range considered. Our result for Golden Syrup is compatible with 
Wray's measurements at 20 "C (Wray 1978). 

Appendix B. Dynamical regime of the experiments 
At high Prandtl number, plumes are generated in the thermal boundary layer which 

is thinner than the momentum boundary layer. If the fluid layer is deep enough, each 
individual plume becomes turbulent at some distance from the boundary. Extending 
the analysis of Kraichnan (1962) to the variable-viscosity case, we find that this regime 
is not attained. 

Steady-state experiments by Heslot, Castaing & Libchaber (1987) and Castaing et al. 
(1989) in helium (0.6 < Pv < 1.7) indicate that, at Rayleigh numbers in excess of about 
1 07, the spectrum of temperature fluctuations changes, which defines a new dynamical 
regime called 'hard turbulence'. Castaing et al. (1989) suggest that the dynamics of 
boundary-layer instabilities are affected by a large-scale circulation and that two 
lengthscales are involved: the total layer depth and the thickness of the unstable 
boundary layer. They propose that the Nusselt number/Rayleigh number relationship 
follows a 5 power law instead of the power-law for thermal turbulence. Two 
additional parameters play a role : the aspect ratio of the tank and the Prandtl number. 
In the experiments of Castaing et al. (1989), the aspect ratio is unity, and it is not clear 
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whether it is the height or the width of the tank which affects the dynamics. According 
to Deardorff & Willis (1965), in air (Pr = 0.7) at Rayleigh numbers between lo5 and 
lo7, it is the width effect which comes into play because it prevents the free 
'mushrooming' of plumes. For large Prandtl number and large aspect ratio, there are 
conflicting results. In a numerical study in two dimensions, Hansen, Yuen & Kroening 
(1990) described a transition in flow structure at Rayleigh numbers between lo' and 
lo8, which they attributed to the onset of hard turbulence. However, in the experiments 
of Goldstein, Chiang & See (1990) at Rayleigh numbers between lo9 and lo1', the 
Nusselt number follows the + power law. 

In our experiments, the tank aspect ratio is 1.5, Prandtl numbers are always higher 
than 7 x lo', and Rayleigh numbers for which heat flux determinations have been 
carried out are less than 2 x lo'. In transient conditions, over the duration of the 
recordings, it is probable that no large-scale circulation has time to develop. 
Interestingly, the careful study by Katsaros et al. (1977) in water (Pr = 7) was also 
made in transient conditions for aspect ratios between 1 and 1.5 and Rayleigh numbers 
between lo6 and lo9, and led to a + power law relationship for the Nusselt number. We 
thus conclude that, in our experiments, boundary-layer instabilities are determined 
primarily by local conditions in the unstable boundary layer. 
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